
NOTATION 

I, current strength; P, pressure; G, gas flow rate; R and L, radius and length of the 
channel; V z and Vr, axial and radial velocity components; E, electric field strength; T e 
and Th, temperatures of electrons and heavy particles; 0 = Te/T h, degree of nonequilibrium; 
ne, ni, and nn, numbers of electrons, ions, and atoms per unit volume; J' = J - &J, effec- 
tive ionization potential; &J, lowering of ionization potential in the plasma; F i, change 
in the number of ions per unit volume; p, gas density; o, coefficient of electrical conduc- 
tivity; h e and ih, coefficients of thermal conductivity of electrons and heavy particles; k, 
Boltzmann number; v, collision frequency; m e and m n, masses of an electron and an atom; r 
and z, radial and axial coordinates; Zi(T e) and Zn(Te), statistical sums over states of 
electronic excitation of ions and atoms. 
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STRUCTURE OF THE FIELD OF REFLECTED RADIATION FOR RADIATIVE 

HEAT EXCHANGE IN SYSTEMS WITH SPECULAR SURFACES 

A. V. Arendarchuk UDC 621.365.24:536.2:535.312/313 

Problems of the calculation of radiative heat exchange in systems with spe- 
cular surfaces of arbitrary shape are considered. 

In the design of modern electrothermal apparatus with specular surfaces (reflectors, 
mirrors) of complicated three-dimensional shapes one needs a highly informative method of 
calculating the distribution (field) of radiant flux in the radiation source-mirror -re- 
ceiver system. Such a calculation allows one to estimate the effectiveness both of the 
chosen system as a whole and of its individual components [I]. 

Two main approaches to the solution of problems of the reflection of radiant flux in 
thermal apparatus are known. The first is to investigate the transfer of a portion (beam) 
of the self-emission of the source in the process of its successive reflections in the sys- 
tem; the second is to investigate the incident and effective fluxes of each surface of the 
system by setting up integral (or zonal) equations for them. 

For systems with specular surfaces it is more appropriate to use the first approach 
in practical applications. This is explained by the correspondence of the calculation al- 
gorithm to the physical representation of the process of energy transfer in such systems: 
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Fig. I Fig. 2 

Fig. I. Geometry of the "source-mirror-receiver" sys- 
tem (surfaces Al, A 2, and As, respectively) and ele- 
ments of the structure of the calculated field (ray 
tubes) in this system. 

Fig. 2. Caustic of a parabola (from [23]). 

In specular reflection the radiation beam does not lose the properties of directivity, as 
happens in diffuse reflection, but propagates further along strictly determined trajecto- 
ries (it is just this property that determines the functional purpose of reflectors: the 
formation of a radiant field of a given, often rather subtle and complicated structure). 

The field structure in radiative heat exchange can be represented using various concepts 
employed in the analysis of radiant fluxes. Thus, in [2] the interpretation of radiant flux 
is connected with concepts of the radiation vector, indicating the direction of energy trans- 
fer, with its absolute magnitude determining the power of this transfer through a unit area 
perpendicular to the direction of the vector, and the line of radiant flux, at each point 
of which the radiation vector is directed along a tangent to it. In our problem, with a 
specular surface, it is more practical to use the concept of an elementary ray tube, formed 
by a beam of rays traveling close together, since in this case the solution has greater 
clarity and informativity. In particular, the shape of the caustic - one of the properties 
of a field of reflected radiation - is easily determined as the envelope of the reflected 
rays. Along with a beam of rays, we shall also consider their associated radiation wave 
front [3]. These two concepts are inseparable in the description of the field structure 
and energy transfer in the approximation of ray (geometrical) optics [4, 5]: The rays are 
defined as trajectories orthogonal to the wave fronts, and vice versa. The use of the wave 
front in the given problem allows us to generalize existing particular solutions. 

Let us consider the distribution of reflected flux for the case when the space of radia- 
tion source-mirror-receiver system (in thermal apparatus this is the so-called "oven space") 
is filled with a nonabsorbing, nonscattering, and nonrefracting medium; then the rays filling 
the tube are straight. In Fig. i we show such a tube, starting at an element dA I of the 
emitter (source) and ending at an element dA 2 of the mirror (the direction of energy trans- 
fer is shown by an arrow). After reflection, the radiation beam will propagate within an- 
other tube, now starting at dA 2 and ending at the receiver, "cutting out" an element dA 3 on 

it. 

As is well known [4], the relation 

dE (r~&) dA~ = const ( 1 ) 

is valid for any cross section of a ray tube. From this we have 

dE ~ar~) dF2 = pale ~a&) dA2 = pdE (Tdp) dFx, (2) 
where dF I and dF z are elements, "cut out" by the tube, of the surfaces of wave fronts of the 
beam incident (initial) on the mirror and that reflected from it, respectively. If s is the 
distance between dA= and dF 2 along the tube, then 

dE (Tap,)= pdE (TaA) dAe _ pdE (F--dA,) 1 ( 3 ) 
" dF2 - [ K P - - 2 H I +  11 ; 
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here the ratio of the surface elements (the divergence of the tube [6] or the exchange coef- 
ficient [3]) is revealed by methods of differential geometry. If dA 3 is substituted in 
place of dF2, i.e., the flux density on an element of the receiver is determined, then the 
cosine of the angle of incidence of the radiation on the receiver appears in Eq. (3) (see 
Eq. (5) in [3]). 

The essence of revealing the ratio of elements in (3) consists in mapping an element of 
the mirror surface onto the surface of the receiver by the reflected wave front. In the 
physical interpretation this comes down to the change in the shape of the wave front, and 
hence in the cross section of the ray tube, in reflection. Of particular interest is the 
solution for an initial front of arbitrary shape, which makes it possible, by taking an ele- 
ment of the reflector as a secondary source, in particular, to extend the results obtained 
to the case of multiple reflections. The values of K and H, expressed through the curva- 
ture of the surfaces of arbitrary shape of the initial wave front and the mirror, are given 
in [7-9] and are used in [3] for problems of radiative heat exchange. The well-known rela- 
tions for spherical [10-12] and plane [13] fronts can be obtained in the form of particular 
cases from (3) or from (5) in [3]. Equations for the multiple reflection of an initial 
spherical front are given in [14]. 

On the other hand, using the laws of ray optics,_the field at the point rdF 2 can be ex- 
pressed through the value of the field at the point rdA = of the mirror and the principal 
radii of curvature R I and R 2 of the reflected wave front [4, 15]. Under the conditions of 
our problem 

R~R~ = pdE ( T ~ )  + l + 1 . ( 4 )  
dE (~r,) = pdE (~A,) (R~-- l )(R2- l) R~R2 

Similar equations were given in [16, 17], for a plane front in the latter paper. The conver- 
sion from Eq. (4) to (3) is given by the relation [6, p~ 116] 

1 R~,~ =--k-(H+v H~--K). (5) 

We note that from (3) or (4) for plane specular surfaces it is easy to obtain [18] the 
elementary resolvent angular coefficients, well known in the theory of radiative heat ex- 
change, the apparatus of which has proved impossible to extend to curved surfaces of ar- 
bitrary shape (see the analysis of [19] in [10-12, 18]). 

The shape and position in space of one of the distinctive features of the structure 
of the field of reflected radiation, the caustic [4, 5], are determined from (3) or (4) 
with ~ = R l and s = R 2. In practical calculations it is of interest as the region where 
the density of radiant energy is extremely high. Thus, by a joint solution of the equations 
of the caustic and the receiver surface, it is easy to determine the location of points 
of increased flux density on the receiver. Knowledge of the properties of caustics acquires 
particular significance in the design of apparatus with several specularly reflecting sur- 
faces, particularly with retroreflectors, where the caustics are a factor influencing the 
characteristics of the entire system. 

One of the widely known examples is the caustic of a beam of parallel rays reflected 
from a spherical mirror (see, e.g., [6, 11, 12]). The shape of the caustic for such a 
popular type of mirror as parabolic mirrors is less well known. Thus, in [20, 21] the 
shape of this caustic was determined for oblique incidence of a beam of parallel rays on 
a paraboloid. This shape has long been known, however: See the references in [22], where 
it is also noted that "it has great similarity to the Cartesian surface" (Fig. 2). 

The calculation method presented in the present article, at the basis of which lies the 
mapping of an element of the mirror onto the receiver by a reflected wave front, was re- 
alized in a three-dimensional mathematical model of an infrared exciter with a specular 
reflector [i]. 

In conclusion, we note that all the relations given above are also valid for tubes 
of finite cross section, but now with respect to the average values of the respective quan- 
tities. It is only necessary to allow for the fact that, in realizing the above method in 
mathematical models, the different approaches (tubes of elementary or finite cross sections) 
will correspond to similar algorithms, differing mainly in the means of calculating the flux 
at the receiver. 
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NOTATION 

dA i, an element of the i-th surface; dE(idA.), flux density in the vicinity of the point 
-- . . . , 1 

redAi; R I and R 2, prznczpal radxl of curvature of the reflected front; K = I/RIR 2, total 
(Gaussian) curvature of the reflected front; H = 0.5((I/R I) + (I/R2)), average curvature of 
the reflected front; p, reflection coefficient of the specular surface. 
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NONLINEAR EFFECTS DURING FILTRATION IN BEDS WITH 

LARGE-SCALE STRUCTURAL INHOMOGENEITY 

Yu. A. Buevich and V. A. Ustinov UDC 532.546.7:622.276.3 

A model of the nonlinear hydraulic relation between the porous volumes of a signi- 
ficantly inhomogeneous bed is proposed, and its influence on the draining of unit 
volume of borehole, as well as on the curves of bed-pressure recovery and on the 
indicator diagrams of the borehole, is investigated. 

Recently, the industrial petroleum content of distinctive clay bituminous rocks with 
unusual (in comparison with well-known collectors) and in many respects unique properties 
has been established; the collector of the so-called Bazhenov formation of western Siberia 
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